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Polyurethanes (PUs) are one of the most widely used polymers in research and
industry. They can be synthesized from chemical sources and natural sources.
PUs are a very useful class of polymers and exhibit many desirable properties that
can be exploited in various applications. PUs are formed by the reaction between
polyols and isocyanates. A wide variety of polyols and isocyanates are available
for synthesis, and hence we can produce a large number of PUs. PUs show high
mechanical strength, chemical resistance, flexibility, and resilience. One of the
major advantages of some specially designed PUs is their ability to recover their
primary shape, which is known as shape memory. The shape-memory effect
(SME) of PUs makes them popular in biomedical, electronic, and thermal
applications. The SME can be monitored using different measures such as shape
fixity, recovery time, and recovery rate. Various stimuli are applied to shape-
memory materials to induce shape memory. PU polymers can be modified with
different nanofillers, and these fillers influence the shape-recovery parameters.
PU composites are popular because of a good property–price relationship. This
chapter discusses the various factors affecting the SME of PU composites and the
effect of different types of fillers on the PU matrix.
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Introduction

Polyurethanes: An Overview

From their first synthesis through a normal polyaddition reaction in 1937 by the genius German
chemist Prof. Otto Bayer, polyurethanes (PUs) have been one of the most demanded plastics in the
world. Otto Bayer is recognized as the father of PUs. PUs are a class of polymers that are widely
used in industry in applications such as upholstery materials, resilience materials, and bushings. PUs
are very much close to our lives, from clothes to footwear, from bedding to roofing, and from cars
to the construction field. PU attributes include high mechanical strength, flexibility, and chemical
and oil resistance. These properties make them a favorite candidate in a variety of aforementioned
applications. PUs are interesting polymers because of their methods of synthesis and wide field of
applications. The reaction chemistry of PU is simple, but it has unwanted side reactions. Generally,
PUs are reaction products of an isocyanate and an oligomeric compound containing hydroxyl groups,
called polyol, and often a chain extender (low molecular diol). Depending on the choice of the
starting materials, the chain length, properties, and applications of PUs can be tuned. Because PUs
contain reactive functionalities, they easily form blends and composites with other polymers. PU
composites are used in biomedical applications because of their biocompatibility and possible
biodegradability. The polyols can be derived from vegetable oils, and the PU composites made up
of these polyols normally show biodegradability. Biobased PUs may be recycled, and hence it is a
step toward a greener approach in PU synthesis. In addition to the aforementioned advantages, PU
composites are known to possess a wide range of good intrinsic properties. The segmented structure
of PUs makes them capable of memorizing the shape (shape memory). Shape-memory PUs are very
important both industrially and biomedically.

Synthesis of PUs

PUs are segmented polymers that contain two segments: hard and soft (Scheme 1).

Scheme 1. General structure of segmented PUs.

The diol part constitutes the soft segment (SS), and the isocyanate constitutes the hard segment
(HS). The chemical linkage in the polymer is denoted as urethane linkage (-NHCOO-) and is the
most reactive moiety in the PU. There are mainly two types of PUs: polyester based and polyether
based, depending on the diol part. The general synthetic route of a PU is given in Scheme 2.
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Scheme 2. Synthetic route of PU from diol and isocyanate.

Biobased PUs

As mentioned previously, PUs are synthesized from polyol and isocyanates. Isocyanates are
considered harmful or toxic chemicals. After the use of PU and its composites, waste disposal is
a huge environmental consideration. Both incineration and landfilling are unsafe. So the synthetic
route must be modified to make it environmentally friendly or green. Here comes the role of
development of biobased PUs. Various methodologies have been adopted in order to make PUs
greener, such as selecting biobased polyols and isocyanates, converting the byproducts into
secondary materials, and considering non-isocyanate routes in the synthesis.

Fatty acids are a rich source of precursor materials for the PU industry. As a general
consideration, biobased PUs contain polyols from vegetable oils. Castor oil is used in large quantities
to derive polyols. Castor oil is a nonedible oil with economic importance. It contains triglycerides
of hydroxyl fatty acid known as ricinoleic acid. From this oil, polyol can be derived, and the castor
oil–based PU composite can be prepared with suitable isocyanate. These composites have been used
in the biomedical field. Plant-oil–based polyols, including those derived from soybean, sunflower,
jatropha, linseed, tung, palm, and Sapium sebiferum kernel oils, can also be used for the preparation
of novel specific PU formulations. The strength of biobased PUs can be improved, and the resultant
materials can be used for composites, polymer concrete, and marble preparation. PU concrete based
on vegetable oil polyol has a splitting tensile strength of 22 MPa, a flexural strength of 50 MPa, and a
compressive strength of 115 MPa, which is about 5–10 times higher than that of conventional high-
strength concrete and higher or comparable to epoxy- or polyester-based concrete (1).

Biobased PU nanocomposites can be synthesized by adding suitable nanomaterials such as
fibers, silica, graphene, carbon nanotubes (CNTs), or biomaterials. Graphene oxide (GO) can be
used to modify plant-based PUs (Figure 1).

There are materials from which eco-friendly isocyanates or related compounds can be
synthesized. Vegetable feed stock is a rich source of furfural. This material can be used to produce
furfuryl amine, which can be converted into furfuryl isocyanate, a green precursor for PUs. We can
reduce waste materials and also toxic chemicals. When such isocyanates are reacted with biobased
polyols, the PUs become biodegradable and eco-friendly. The flow behavior of PU-synthesized
biobased isocyanate and soybean oil–based polyol can be tuned by controlling the amount of polyol.
These types of composites are non-Newtonian (2).
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Soy-based PUs have thermal, oxidative, and hydrolytic stability that is superior to those based
on petrochemicals, and soy-based PUs could be a practicable substitute for petrochemical–urethane
matrix resins for composites.

Figure 1. Biocomposites fabricated from PU with graphene as fillers. The graphene sheets are functionally
attached to the PU chain.

The properties of biobased PUs can be improved by the addition of a second phase. When glass
fibers are used, the mechanical properties can be improved. The physicomechanical properties of the
resulting composites with glass fiber loading from 15, 30, and 50 wt % showed significant increase.
The storage modulus of virgin biobased PU gets a 14-fold increase on reinforcement with 50 wt
% glass fibers. The results highlight a significant enhancement in strength and modulus of virgin
biobased PU by more than 260 and 480%, respectively, for a fiber content of 50 wt % (3).

When soy-based PUs were modified with glass fibers, a noticeable increase in mechanical
strength was obtained. The thermal stability and durability of the biobased PUs containing molasses
and lignin can be improved by adding inorganic fillers such as barium sulfate and calcium carbonate.
The hydroxyl (–OH) group in the plant materials can act as a reaction site (4). Thermal and
mechanical stability can be enhanced by adding natural fibers such as unidirectional sisal fibers. PU
prepared from rubber seed oil can be modified by adding such fillers, and the flexural modulus and
tensile strength can be enhanced. Because of the high fiber matrix interaction, the thermal properties
can also be enhanced (5). The flexible PUs derived from castor oil–based polyols can be made stiff
by adding cellulose nanowhiskers. In order to enhance the compatibility, the cellulose nanowhiskers
can be modified and covalently bonded to a PU chain. The storage modulus can be improved by this
modification. Increased cross-link density and enhanced interaction between biobased PU matrix
and nanowhiskers are responsible for the increase in properties (6).

Fiber volume fraction, fiber length, and alkaline treatment can influence the mechanical and
thermal properties in the case of short random banana-fiber-reinforced PU derived from castor oil.
Hydrophobic coatings can be synthesized from dispersion of PU–perfluorooctyltrimethoxysilane-
nTiO2 hybrid in a solution containing castor oil, triethanolamine, and isophorone diisocyanate
prepolymer. The degree of hydrophobicity was found to be increased from 68 to 132° as per the
contact angle measurements. These composites also exhibit self-cleaning properties.
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Shape-Memory Behavior: An Overview

Shape-Memory Polymers and Phases: Amorphous and Crystalline

PU polymers are very structurally interesting materials. This group of polymers can be
synthesized from many different substrates, such as isocyanates, oligomers, chain extenders, or cross-
link agents and catalysts.

Shape-memory polymers (SMPs) belong to the specific class of smart materials that are able to
respond to proper stimuli and recover their original shape (OS). The general definition of an SMP is a
polymer that is able to memorize its original permanent shape, achieve a metastable temporary shape
under deformation, and return to the OS through a stimulating factor.

Specific properties of PU SMPs are able to be observed when external stimulation occurs, such
as a thermal, chemical, or physical (e.g., light) factor (7). The behavior of such materials is
demonstrated by the extremely wide group of materials known as PUs. PUs are predestinated as
SMPs because their structure is basically built from HSs and SSs (8). The presence of these structural
forms is related to the fact that PUs are made of rigid segments (isocyanates + chain extenders or
cross-linkers) and flexible segments (polyols) (Figure 2) (9). The shape-memory effect (SME) of PUs
is strongly associated with microphase separation of these polymers, and therefore, they exhibit the
characteristic behavior of SMPs. The heterogenous structure (different HSs and SSs) within PUs may
be able to control external factors (characteristic trigger). For PUs, studies show that the SS phase is
related to the shape fixity of the materials, whereas the HS phase is in charge of shape recovery. In
PUs, SSs can act as actuator domains, in which polymer chains or chain fragments are straightened
at tension at a temperature higher than the glass-transition temperature (Tg), their position is fixed at
cooling, and they are able to shrink and return to the coiled form at repeated heating. In turn, the HSs
can support crystallization of the SSs (10).

The polymeric hard phase is reliable for retaining the original geometry of the SMPs. This
segment may be formed by chemical cross-linking, interpenetrating networks, or the formation of
crystalline phases within the PUs (11).

Figure 2. Microphase separation structure of PUs.

The most investigated SMPs are thermally induced materials, which are triggered by heat.
It is well-known that transition temperature (Ttrans) usually equals Tg for SMPs possessing an

amorphous phase. For polymers that contain a crystalline phase, this transition is in the region of
melting temperature (Tm) (11). In line with this division, it is important to properly define the basic
parameters of PUs to determine the phase Ttrans.

Based on analysis of SMPs (12), it was proven that high crystallinity of the SSs is important
for obtaining SMP. Therefore, higher crystallization of the HSs and their stable domain structure
is preferred to achieve good SMP properties. Additionally, besides conventional thermal transitions
(Tg, Tm), the presence of hydrogen bonds (Figure 2) could also be used to control thermal transitions
in the SMP materials in PUs (13).
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Shape Fixity

The shape-memory properties of PU polymers are often characterized by shape fixity, in which
temporary shape can be fixed, and shape recovery, in which the permanent shape is recovered.

Shape fixity is the extent of OS being fixed for an SMP. This behavior can be described by eq 1:

where εload (eq 1) represents the maximum strain under load, ε is the fixed strain after cooling and
load removal, and εrecovery is the strain after recovery (eq 2).

Characteristic parameters for materials with shape memory can be determined by
thermomechanical tensile experiments with the use of a tensile testing machine, which is often
equipped with a thermo chamber. Research often concerns specimens that are deformed (elongated
or compressed). SMPs (especially PUs) are tested to find how the temporary shape is obtained and
a recovery state is achieved. Using this procedure, shape recovery of the OS or the recovery stress is
being tested. Changes in these parameters can be tested under controlled stress or strain conditions
(14).

One of the most useful methods (next to tensile testing) to characterize the shape fixity
parameter is dynamic mechanical analysis. This thermomechanical tool allows us to measure
thermally induced multi-shape-memory behaviors (for example, using tension clamps and
controlled-force mode) (15).

Shape Recovery and Recovery Rate

Shape recovery can be defined as the ability of a polymer to remember the OS from a temporary
changed shape. The shape recovery rate is the percentage of the ratio of deformation recovered by the
sample to the deformation taken place in this material (11):

Thermomechanical tests are often performed to characterize the aforementioned parameters
(related to SME). Shape recovery and shape fixity can be characterized using a universal testing
machine using cyclic loading/unloading mode with a temperature-controlled chamber (16). It is
possible to characterize shape recovery as a function of cycles. Then parameter Rr can be written
according to eq 3 (for strain-controlled sample):

where (N) represents the N cycle number of the strain after recovery, and (N−1) represents the strain
after recovery during the previous cycle.

It is worth noting that a shape-memory characteristic strongly depends on the polymer
structure, type of material (PU or other polymer), and conditions of the process (e.g., heating or
cooling rates or the type of mechanical deformation).

It is essential that the study of these two basic parameters (shape fixity and shape recovery)
have been measured to evaluate the shape-memory behavior of the polymers and in particular PU
materials.
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The Mechanism of the SME

PU heat-responsive materials are characterized by network architecture based on occurring
domains of chemical or physical cross-linking (Figure 3) and switching domains connected to a
Ttrans. This characteristic temperature can be associated with the Tg or the Tm of PU (Figure 3).

Figure 3. Schematic SMP structures containing covalent bonds or domain structure needed to obtain the
SME. Reproduced with permission from reference (11). Copyright 2017 IntechOpen. The article was

printed under a CC-BY license.

The shape-memory phenomenon can be observed when a shape is programmed to the
temporary shape. This shape may be given by the deformation (e.g., elongation, bending) and can be
acquired by preheating the material to more than Ttrans and then cooling to less than this Ttrans (17).

Shape-memory behavior can be observed for several polymers (elastomers, copolymers, liquid
crystal polymers, or PUs). The basic programming process and recovery of a shape is shown
schematically in Figure 4.

Figure 4. Schematic behavior of the thermally induced one-way SME. Reproduced with permission from
reference (18). Copyright 2002 Wiley-VCH.

Figure 4 presents the different stages of a material’s shape: the OS, the temporary shape
(programming), and the permanent (original) shape (recovery). The first stage is programming the
temporary shape of the sample. This process can be led by using, for example, a thermal factor.
During the second stage, the temporary shape is programmed to obtain the appropriate sample
geometry. Next, at the third step, the sample is returned to the OS during the recovery process
(Figure 4) (19).
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General classification of SMPs is based on single-shape or dual-shape behavior. Single-shape
action is connected with an irreversible recovery mechanism in which the change of shape can be
made from a temporary shape to a permanent shape only. In the case of dual-shape behavior, which is
characterized as a shape-memory cycle, metastable temporary shape and an equilibrium permanent
shape are distinguished (20).

The permanent shape is transferred to the temporary shape by the programming process.
Heating the sample to a temperature higher than the switching Ttrans results in the recovery of the
permanent shape (18).

Figure 5. Thermomechanical mechanism of SMP. Reproduced with permission from reference (21).
Copyright 2020 SAGE.

Temperature stimulating of sensitive polymers is one of the characteristic methods to describe
their shape-memory properties. The schematic mechanisms of temperature-sensitive SMPs are
shown in Figure 5. These programming and recovery modes are divided into several stages. At
the first step, the sample is heated to more than the Tg, and force is applied to achieve proper
deformation. Next, the sample is cooled with applied force to a temperature less than the Tg zone.
After these treatments, the SMP sample acquires the programmed shape (PS). Then the sample is
reheated to more than Tg and is able to recover to the initial shape (22, 23).

Generally, SMPs belong to the class of covalently or physically cross-linked materials, which can
have viscoelastic properties in the specific temperature range. Figure 6 shows the basic molecular
mechanism of the SME. Generally, polymer network structures contain netpoints and switchers,
which are stimuli-sensitive elements (Figure 6) (24).

SMPs are usually built with netpoints and polymer chains that act as connectors. From a
chemical and physical point of view, they can be constructed from chemical bonds (covalent) and
intermolecular interactions. As represented previously in Figure 3, covalent bonds can be formed
by a cross-linking reaction, and physical “cross-links” can be formed by the physical interactions
with crystalline and amorphous structures (for PUs: HSs and SSs). The chains connected to the
netpoints must be suitable to achieve proper orientation, especially with regard to programming
shape. The possibility of deformation of the polymer chains is correlated with their elasticity and
length. Switching between OS and programming deformation is possible because of the presence
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of these chain segments as well as cross-linking points (net points), which play an important role
in this process. Thus, the presence of both systems is essential to the process of SMP functioning
(programming, recovery) of materials. The essential connections of the systems can be formed by the
previously mentioned cross-linking points (chemical) and physical cross-linking. Chemical cross-
links can be created by the reaction of two functional groups giving a chemical bond. In the case of
physical cross-linking appearing during the cooling process, the crystalline domains can be formed
and function similar to chemical cross-linking points (24). Additionally, good separation of the
amorphous and crystalline phase promotes the temporary shape fixation.

Figure 6. The molecular mechanism of the SME. •, cross-linking nodes; LMCh, low-mobility chains (less
than Ttrans); HMCh, high-mobility chains (more than Ttrans). Reproduced with permission from reference

(20). Copyright 2015 Elsevier.

Figure 7. Polymer structures during one-way shape-memory changes. (a) Multiblock copolymer transitions
(Ttrans = Tm). (b) Cross-linked crystalline polymer transitions (Ttrans = Tm). (c) Network structure of

glassy polymer transitions (Ttrans = Tg), where OS polymer chains represent OS and PS chains are
programmed.

Polymeric materials that exhibit shape-memory properties may show different behavior under
some temperature changes. In this case, the molecular structure of the polymer may produce some
switching phenomenon.

From the thermodynamic point of view, the SME can be assigned to storage energy and release
of strain energy by using entropy of the network (25). The flexibility of the polymer chain is
connected to the changes of the temperature parameter. The key issue in studying SMP behavior
is to characterize the Ttrans, which plays a crucial role in programming the behavior of this type of
material. At less than the Ttrans, the polymer chains (Figure 7, OS of the polymer chains) are stable
and interact as multiphase structures. Within them are present crystalline and amorphous structures
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or cross-linking polymer chains. In the case of programmed deformation of shape and subsequent
cooling, the characteristic segments lock the polymer in an intermediate state (Figure 7, PS of the
polymer chains). The next step is heating to more than Ttrans, and the polymer structure returns to its
original state.

As was mentioned before, shape-memory PU polymers are very versatile materials that are able
to recover to their original (permanent) shape from temporary shapes under an external stimulus.
Additionally, SMP materials can achieve a number of temporary shapes, such as dual and multiple
SMPs.

For a dual SMP, the temporary shape achievement and OS recovery are determined by a
reversible Ttrans, in which the chain mobility is limited (shape fixation) and there is also release
limitation (shape recovery), when changing the temperature to less than and more than Ttrans. It is
well-known that a lot of polymers may show a dual-shape memory behavior (especially PUs) when
they have one reversible thermal transition close to Tg for an amorphous polymer and Tm for a
semicrystalline polymer (13).

The triple SMPs are able to memorize three shapes (two temporary shapes and one permanent
shape). This behavior can be seen also in multiple SMPs, in which more “metastable stages” are
remembered. The dual SMP exhibits only one thermal transition for one temporary shape, whereas
the triple (or multiple SMP) is based on one broad thermal transition or at least two separated
thermal transitions (13). The basic triple shape-memory cycle mechanism is presented in Figure 8.

Figure 8. The molecular mechanism of a triple shape-memory cycle. Adapted with permission from reference
(13). Copyright 2019 Elsevier.

At the first step of the triple shape-memory cycle, the sample must be heated to temperature T1
(Q1) and then deformed (W1). In the next step, the sample is cooled to temperature T2 under the
deformation force.

The first temporary shape, called (ε1), is the achieved metastable state after removing the
external force from the sample. Next, the material is deformed (W2) and cooled to temperature T0,
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and the second metastable state is achieved (Ub2). The second temporary shape (ε2) can be formed
when the force is removed. The sample can recover from (ε2) to (ε1), the first temporary shape, and
from (ε1) to (ε0) and the OS when it is heated (13).

Factors Affecting the SME

SMPs are a class of controlled and programmable materials, and their behavior depends on
many factors. These materials can exhibit the SME under different factors, including thermal, light,
magnetic, electric, microwave, and chemical ones. (8).

One of the most important factors influencing the properties of an SMP is the cross-link density
of the polymeric material. It was proven that a higher cross-link density of the polymer increases
shape-recovery values. Preparing SMPs with good shape-memory properties should be controlled
by the cross-linked density of the final polymeric product (26).

On the other hand, to achieve physical cross-links in materials with SMP properties, the
presence of at least two different domains with different thermal transitions (such as in PUs) or some
other block copolymers is needed. The polymeric domains with the highest thermal transition can
behave as cross-linking points and are responsible for the permanent shape, whereas the regions with
lower thermal Ttrans can be responsible for the switching segments (26).

The shape-memory properties can be linked by the degree of crystallinity of the PU polymers. It
was proven that higher recovery stress depends on a higher degree of crystallinity, but recovery rate
and shape recovery decreased with increasing the degree of crystallinity (19).

Shape-memory properties depend on many factors, including mechanical stress/strain mode,
temperature, and strain rate, as well as structural factors and chemical or physical cross-links
(flexibility of the polymer chains). More specific SMPs depend also on many factors such as the
programming step and the triggering process parameters.

The Influence of Tg or Tm on SMP Properties

The most important transition characteristics for SMP materials are the two thermal transitions:
Tm and Tg.

Ttrans is usually equal to Tg for amorphous SMPs or Tm for a crystalline SMP. These parameters
can be characterized by standard thermal analysis techniques such as differential scanning
calorimetry or dynamic mechanical analysis (11).

The shape-memory process of the polymer material is presented as a shape-memory cycle in
Figure 9. The basics steps of the SMP material are described in the literature as programming, storage,
and recovery (27). At the first step, it is necessary to program the shape of the polymeric material
and apply force to achieve the optimal sample deformation at more than the Ttrans. This is an easily
executable manipulation because material is in the viscoelastic state at more than the Tg. After this
programming stage, this structure needs to be fixed under the appropriate level of strain and time, so
fixed SMPs must be cooled to less than Tg. The last step of the memory cycle is called the recovery,
when the temperature of the material is rising and the sample returns to the previous (original) state.
This type of SMP property is characteristic for shape-memory materials sensitive to temperature
changes (Figure 9) (27).
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Figure 9. The molecular mechanism of the SME. (a) Two-dimensional graph (strain vs stress vs time vs
temperature). (b) Three-dimensional graph. Adapted with permission from reference (27). Copyright 2020

Springer.

Figure 10. Tm and Tg of different types of SMPs (the gray area represents switching of the SMP). Adapted
with permission from reference (28). Copyright 2015 Elsevier.

Shape-memory properties are exhibited by different types of polymers, such as copolymers,
rubbers, thermoplastics, and thermoset materials.

The switching transitions (at the melting area temperature) can be observed in semicrystalline
and physically cross-linked polymers as well as in chemically cross-linked rubbers (Figure 10). In
turn, when the switching transition is connected with the Tg, it can be used for describing shape-
memory properties of chemically cross-linked thermosets as well as of physically cross-linked
thermoplastics (28).
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The Ttrans for the thermoplastic and thermoset polymers is localized in the Tg range (gray
region) (Figure 10). For the cross-linked rubbers and block copolymers, the Ttrans is rather localized
at the Tm appropriate for one of the blocks of the block copolymer and its Tm1 Figure 10 (27).
These basic types of polymers are the primary types of materials that can exhibit the SMP properties
described in this chapter.

PU polymers belonging to the thermoplastic elastomers exhibit good processability. These
materials have low levels of chemical cross-links, but because of physical cross-linking, thermoplastic
PU elastomers possess properties similar to classic covalent cross-linked elastomers (28).

PUs and Their Shape-Memory Composite

PU is one of the best examples of SMP and is known to regain 100% of its shape if it is stretched
to more than its Tg and then cooled to fix the new shape. It can be reheated to more than the start of
the glass transition zone, which facilitates complete recovery of its original form.

SMP Composites of PU and Carbon Derivatives

A variety of stimuli-responsive composites may be obtained by the blending of PU with
carbonaceous materials such as CNTs, graphene, and carbon black. The SMEs can be enhanced by
the addition of carbonic fillers. The limitations of virgin SMPs can be minimized by the incorporation
of fillers. Being low-density particles in the regime of nano dimension, carbon derivatives are highly
preferred to act as fillers. The anisotropic nature of CNTs assists in attaining exceptional thermally
and electrically conducting SMP composites (29). High surface area, easy synthetic strategy,
flexibility, and superior mechanical strength make graphene nanoparticles sufficient fillers for
providing high thermal conductivity (30). Carbon black also acts as a conductive filler and is available
at a cost lower than that of graphene and CNTs.

CNTs as Fillers

Many research groups have investigated the effect of incorporation of CNTs in PU matrix. When
CNT was added to PU in an amount ranging from 0.5 to 5%, there was a reduction in the resistivity
of the material, depending on the amount of CNT; these composites were highly strain-sensitive.
At a lower percentage of CNT, the PU composites could exhibit only delayed recovery of shape.
SMPs have a distinct behavior in the presence or absence of electrical actuation. A high step up in
shape recovery was noticed at a higher content of CNT (31). An outstanding improvement in the
shape-memory properties was obtained when PU formed a hybrid with CNT and montmorillonite.
The dispersion of CNT could improve the mechanical properties and crystallization in the case of
composites and was higher than that of the pristine PU. Both shape fixity and shape recovery can
be obtained at this synergic effect, eventually resulting in exceptional thermomechanical properties
(32). A flexible methodology, spray deposition, was used to fabricate nanocomposite in which CNT
layers are incorporated into thermoplastic PU. This novel technique is feasible in tuning the number
of layers of CNT, and localized actuation is possible in composite. A complete shape recovery was
possible in 30 s at 40 V, and the composite can be treated as a potential material for numerous
actuation applications (33). Melt mixing can be adopted for the fabrication of CNTs embedded in
ester-based PU. A good dispersion of CNTs resulted in very fast shape recovery, and the trigger
temperature could be decided by manipulating the Tg of the matrix (34). Melt mixing is a simple
synthetic strategy for the preparation of polymer-blend nanocomposite containing polylactic acid
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and CNTs. The obtained nanocomposite displayed PU, an enhancement in the electroactive shape-
memory behavior (35). A shape recovery of 98% and a fast recovery time of 9 s were shown by
multiwalled CNT-reinforced PU prepared by solvent casting. These composites show significant
applications in actuator applications (36).

Electroresponsive shape-memory devices can be constructed by adding functionalized CNTs
in the PU network (37). The electroactive materials can also be synthesized from polypyrrole and
Multiwalled CNT coated with polypyrrole (Figure 11).

Figure 11. The electroactive shape-recovery behavior of PU/multiwalled nanotube composites. The pictured
transition occurs within 10 s when a constant voltage of 40 V is applied. Reproduced with permission from

reference (35). Copyright 2013 Elsevier.

The SME of PUs can be diminished by the addition of carbon nanofibers. When carbon
nanofibers with a diameter of 60–200 nm and a length of 30–100 nm were incorporated in the PU
matrix as fillers, the SME diminished, and this can be attributed to the interference of the fibers on
the SS crystallization (38). HSs can also exhibit SME when clay is included as a filler (39). PU SMPs
can be used as UV-protection materials (40). Treated cotton fabric can be dispersed in PU solution
containing multiwalled CNTs. The resulting material will have sufficient water permeation and UV
protection.

Graphene as a Filler

Graphene sheets and CNTs can act as a conductive network in an epoxy-based PU matrix,
and this versatile shape-memory composite finds potential applications in optics and aerospace
technology. The following diagram shows the scheme for the overall fabrication process (Figure 12)
(41).

A micro honeycomb formation of graphene-CNT framework in PU matrix possesses shape-
memory behavior including a recovery ratio of 90.6% and shape fixity of 95.6% (42). The solution
casting method can be used to produce PU nanocomposites with different ratios of polycaprolactone
and graphene sheets. These nanosheets avoid stress transfer, which further results in a high shape-
recovery ratio (43). PU-based shape-memory composites can be prepared by a two-step synthetic
method with epoxy and GO. GO co-valent networks offer potential shape-memory behavior (44).
The effect of reduced GO sheets in a PU matrix on shape-memory behavior was studied by
conducting tensile stress-strain cyclic investigation, and it was found that nanocomposites display
higher shape-recovery ratio than does neat PU (45). In situ polymerization of PU having diselenide
bonds and functionalized GO was done to generate self-healing shape-memory nanocomposite.
Self-healing behavior of the composite was attained under near infrared irradiation. The composite
could also reach approximately 90% in shape fixity as well as shape recovery. Figure 13 shows the
healing process (46).
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Figure 12. Overall fabrication process of the PU graphene foam/epoxy/CNT composites. (1) Immersion of
a commercial PU foam into GO solution with hydrazine. (2) Assembly of graphene sheets on the PU

skeleton by in situ chemical reduction of GO. (3) Immersing PU graphene foam into the mixture of CNTs
and epoxy resin. (4) Curing. Reproduced with permission from reference (41). Copyright 2016 Elsevier.

Figure 13. Schematic showing the possible healing mechanism of a composite of polyurethane/
functionalized graphene oxide containing diselenide bonds under near-infrared light. Reproduced with

permission from reference (46). Copyright 2018 Elsevier.

Carbon Black as a Filler

A conductive material, carbon black was used as a filler in PU to obtain nanocomposite that
reacts to both thermal and electrical stimuli. An excellent shape recovery of 94% for thermal- and
98% for electroactuation was reported (47).

It can be concluded that the addition of carbon derivatives as fillers enhances the thermal,
physical, and shape-memory behavior of PU composites. These exceptional stimuli-responsive
nanocomposites find tremendous applications in various fields such as aerospace, optics, and
biomedical devices.
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SMP Composites of PU and Biomaterials

SMPs are promising biomaterials because of their biocompatibility and material processability.
Because these SMPs are derived from conventional polymers, they satisfy the general requirements
for a biomaterial such as being nontoxic, noninflammatory, and compatible. Polymers such as
polycaprolactone‑, polyglycolic acid–, and polylactic acid–based PU composites were found to have
potential applications in tissue engineering, drug delivery, and biomedical implantations (48).
Poly(L-caprolactone)-based (PCL-based) PU composites are known to possess SME. Segmented
PUs containing SSs with lower molecular weight exhibit shape-memorizing properties.

Fabrication of bone scaffolds was done by combining PU with polyethylene oxide and gelatin,
and excellent printability was observed. PU–polyethylene oxide scaffolds have better shape-memory
properties such as shape recovery and shape fixity when compared with gelatin composite.
Nontoxicity as well as biodegradability of the synthesized scaffolds offers superior surgical measures
for bone tissue engineering (49). A biodegradable polymer blend using PU from isosorbide as the
SS and polycaprolactone as the HS was fabricated. Analyzing the shape memory featuring 30% PU/
polycaprolactone gave better results (50). Electrospun PUs containing polyols demonstrate shape-
memory behavior and are used for tissue engineering and drug delivery. Cell proliferation tests were
conducted on human cardiac fibroblast cell lines, and the composites were found to be active as
nanofibrous scaffolds (51). Shape-memory photoresponsive implants were prepared by the addition
of yak hair melanin to biodegradable PU. Biomedical applications were tested via in vitro analysis
by choosing mouse fibroblast cells and human mesenchymal stem cells (52). Plasma immersion ion
implantation was performed to improve the surface wettability and biocompatibility of PU. Collagen
was coated on PU, and in vitro toxicity was tested by implanting on mice. It was proven that collagen
coating appreciably enhanced the biocompatibility of PU, making it an outstanding material for
implantation (53). The salt-leaching phase inverse method was used to fabricate a porous structure
of PU for tissue engineering. Bone repair and cell proliferation was studied in osteosarcoma MG-63
cells, and the results proved the efficiency of these scaffolds for application in tissue engineering (54).

PU composites are promising materials in the field of bioscience because of their SME. They can
be implanted in the body in a folded or contracted form and can regain shape as the target position
is reached. This unique property when combined with their biocompatibility and biodegradability
creates a significant role in biomedical applications (Figure 14) (55).

Figure 14. Operating mechanism in drug delivery. Reproduced with permission from reference (55).
Copyright 2019 Elsevier.

SMP Composites of PU and Nanoclays

Nanoclays are a well-known filler for the polymer modification. Nanoclays are technically
layered alumino silicates having a two-dimensional structure. These layered silicates have a general
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chemical formula of (Ca, Na, H) (Al, Mg, Fe, Zn)2(Si, Al)4O10(OH)2-xH2O, where x represents the
amount of water. There are two categories of nanoclay: natural and synthetic. A variety of nanoclays
such as cloisite, attapulgite, kaolinite, bentonite, montmorillonite, hectorite, laponite, vermiculite,
and saponite are being used as fillers in polymer matrix. Nanoclay can be used as a reinforcing agent
or as a modifier for PUs because of its biocompatibility, noncorrosive nature, flame retardance, and
nontoxicity.

SMP Composites of PU and Other Nanoparticles

PU composites with SMEs can be prepared by adding suitable fillers, including metal
nanoparticles such as gold and zinc oxide and biobased nanofillers such as cellulose nanofibers and
crystals (56). Among biobased fillers, cellulose is the most commonly used material for composite
preparations that have SME. It is possible to improve the rigidity of the shape-memory composite
by adding a small amount of nanocellulose. A large number of research reports suggested that when
nanocrystals were introduced during the PU polymerization, cellulose nanofibrils were covalently
linked to the PU polymer. Cellulose has polar groups that can interact with PU. Cellulose-reinforced
shape-memory PU markedly improved the stiffness of the polymer while no obvious shape-memory
properties decreased (57).

Gold nanorods can be employed to induce the shape-memory response in commercial PUs
using the seed-mediated process. Composites were activated with near-infrared radiation. The
shape-memory response was controlled by altering the irradiation time and intensity and the gold
nanorod loading. Higher loading and high intensity favor high shape recovery. The recovery and
thermal stability of the composites were not as much when compared with the unmodified PU
composites (58).

Aluminum nitride was tested as a filler in PU-based SMPs even though it did not influence the
structure or cross-linking in PU or enhance the thermal stability. The strain fixity rate, which is the
ability of the specimens to fix their strain, was improved slightly in the presence of aluminum nitride
filler, but the final recovery rate of the shape-memory measurement decreased (59). Biodegradable
composites of PU were tested with a self-expandable stent with iron oxide as the filler. The
nanocomposites had high fixing ratios at more than 99% and recovery ratios at more than 82% at
both 37 and 40 °C. Cytotoxicity and in vitro degradation showed the nanocomposites had good
biocompatibility and biodegradability. Poly(D,L-lactide-co-ε-caprolactone)urethane/Fe3O4
nanocomposites display immense promise for vascular stents with dual-responsive SMEs, favorable
mechanical properties, biocompatibility, and biodegradability.

In the biomedical field, shape-memory PUs are widely used as stents. Figure 15 shows a shape-
memory PU stent (thin wall tube). First the stent is expanded and then folded into a star shape for
delivery by a catheter. When the required location is reached, the stent can be mechanically arranged
in a traditional way. Because the stent is surrounded by room-temperature water and it is made of this
PU, eventually, it will shrink back into OS and can be easily removed (60, 61).

As shown by Huang, one of the wings of a toy airplane that was made of conductive shape-
memory PU was joule-heated to change its shape from curved into flat for wing morphing, which is
a function required for high aerodynamic performance, in particular in unmanned aviation vehicles
(62).

PU can be modified by inserting PCL and 20 wt % ZnO nanoparticles. Composites prepared
by the solution-casting method showed improved mechanical strength and shape recovery. The
composites were prepared by adding from 5 to 30 wt % ZnO. However, only 20 wt % was successful
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in the shape recovery. This can be attributed to the replacement of the −C=O group in SSs by
ZnO, and there was an obstacle for HSs to interact with SSs. More freedom was attained for the
PCL component, incorporating particles as the nucleating agent of PCL chains and increasing the
crystalline domains of the SS. The occurrence of these two phenomena can offer an optimized point
to improve both the modulus and shape-recovery properties (63).

Figure 15. Self-retractable PU SMP stent. Reproduced with permission from reference (60). Copyright
2010 Royal Society of Chemistry.

Applications of Shape-Memory PUs

Biobased PUs and shape-memory PU composites have many applications in different fields. The
biomedical field and industry are mainly taking advantage of two properties, biocompatibility and
shape memory, of PU composites.

Some of the medical applications of shape-memory PU composites include:

• Vascular stents with shape memory as a drug delivery system;
• A specially designed spoon handle, designated for the physically handicapped;
• Construction of hematology-related products and devices;
• Materials for orthopedic and dental applications;
• Bandages and artificial skins;
• Wound closure; and
• Components of cardiac pacemakers and artificial hearts.

Conclusion

Many interesting and useful advantages of stimuli-responsive SMPs described in this chapter
have been developed in many industrial applications such as automotive, aerospace, electronics,
textile, biomedical, and other commonly used products. This review chapter was focused on the
developments in PU SMP materials and composites. PU materials exhibit good shape-memory
properties because of their microphase segregation, which is connected to their chemical structure
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and physical interaction between HSs and SSs. These advantageous features of PU materials can be
enhanced by the addition of various types of nanoparticles. One of the new features in producing PU
SMP materials is the 3-D printing method. Using this technique, it is possible to produce polymer
devices with unlimited geometries in which shape-memory properties can be incorporated (64).

It is worth remembering that when designing shape-memory PU materials, it is necessary to
design an appropriate production technique while focusing on the use of cost-effective and eco-
friendly materials.
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